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a b s t r a c t

The average settling velocity of a suspension of identical particles through otherwise quiescent fluid is
smaller than the settling velocity of a single particle in an unbounded fluid. When a suspension settles
out to form a deposit, this hindered settling effect may lead to complicated sedimentation behaviour,
even if the initial suspension is uniformly distributed. This study analyses the bulk sedimentation of
bidisperse suspensions and calculates the evolution of the volume fraction of each species from an ini-
tially vertically uniform state through to the final steady state where both species have fully settled
out of suspension and have formed a deposit. These calculations are analytical and employ the method
of characteristics to reveal how both particle species evolve. The profiles often include ‘shocks’, across
which discontinuous changes in volume fraction occur. Rarefaction fans may also be found across which
the gradients of volume fraction are discontinuous. These new analytical solutions reveal the evolving
composition of the suspension and the deposit and may be compared to experimental observations. They
also provide test cases that can be used to verify recent numerical techniques for computing the bulk sed-
imentation behaviour of polydisperse suspensions.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding sedimentation from polydisperse suspensions of
relatively dense particles is of considerable importance for partic-
ulate flows in many industrially and naturally-occurring situations.
Very often direct measurements of the settling processes are not
possible and inferences must be drawn by analysing the composi-
tion of the resulting deposit. In this paper we model mathemati-
cally the sedimentation of bidisperse suspensions through
otherwise quiescent fluid and analyse in detail the structure of
the deposit they generate, relating its composition to material
properties of the constituent particles and initial properties of
the suspension.

A suspension will generally comprise of particles with a range
of sizes and densities and this implies that there will be a range
of settling velocities. There is a large body of research into the
dynamics of polydisperse sedimentation featuring both experi-
mental and theoretical approaches. This research has principally
addressed either the problem of sedimentation velocity of a given
particle in suspension, or the bulk sedimentation behaviour, which
describes the settling and depositional behaviour of the entire sus-
pension, for all particle species.

Recent experiments have introduced novel techniques for mea-
suring the evolution of particulate suspensions and associated de-
ll rights reserved.

ell), a.j.hogg@bris.ac.uk (A.J.
posit, when the concentration of suspended particles is high. For
example acoustic techniques (Hoyos et al., 1994) and nuclear mag-
netic resonance (NMRI) (Cheung et al., 1994) have been used to
measure concentration profiles of sedimenting particles. The
acoustic method yields accurate measurements of the suspensions
at volumetric concentrations of up to 50%, whilst using NMRI the
concentration of the suspension can be accurately measured up
to and including the maximum packing value. These techniques
have been used to give a complete profile of the temporally evolv-
ing, concentration of particulates. From these experiments veloci-
ties of settling interfaces of different particle species were
inferred and compared to theoretical predictions made by Selim
et al. (1983) and Davis and Gecol (1994). However, as both of these
techniques have only been used to resolve the total concentration
profile, we cannot use them to infer the behaviour of interior
dynamics, such as rising shocks in particle concentrations which,
as will be shown in this paper, are strongly dependent on the con-
centrations of individual particle species.

Amy et al. (2006) provided measurements of the deposit struc-
ture from sedimenting polydisperse suspensions and showed that
the deposit structure maybe related to the initial conditions of the
suspension. Our results demonstrate that any variations in individ-
ual particle concentrations during sedimentation will be recorded
in the deposit as the particles settle out and thus the deposit struc-
ture is an important method for inferring the bulk sedimentation
behaviour of a given suspension.

While the Stokesian settling velocity of an individual particle
through unbounded viscous fluid is well established (Batchelor,
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1967), the settling velocity at high concentrations and of mixtures
of particle sizes remains on a less firm theoretical footing. The
problem can be summarised as a reduction of Stokesian settling
velocity with an increase in concentration due to the combined ef-
fects of viscosity enhancement by the presence of nearby particles
(Richardson and Zaki, 1954) and the interstitial fluid flow gener-
ated by the motion of the surrounding particles. In this context,
various ‘hindered settling’ laws have been proposed to account
for these effects.

Batchelor (1982) introduced a settling law which used a com-
plex sedimentation expression and a mass conservation model to
describe the settling velocity of a particle in a dilute suspension.
The sedimentation model was derived in terms of submerged grav-
itational forces, Van der Waals forces and the relative diffusion for
a pair of particles. The relative position of the particles was mod-
elled probabilistically and was dependent on material properties
of the particles (ratios of diameters and densities), the ratio of rel-
ative motion due to van der Waals forces and Brownian diffusion
and the particle Péclet number, Pe, which measures ratio of advec-
tion to diffusion. Several similar settling laws have been proposed,
which agree in the dilute limit with Batchelor’s but extend the
model higher concentrations (with greater accuracy) (Davis and
Gecol, 1994; Koo, 2009).

An alternative approach to modelling non-cohesive polydis-
perse suspensions was developed by Masliyah (1979) and Lockett
and Bassoon (1979). This empirical model, henceforth referred to
as the MLB model, includes the aforementioned viscosity enhance-
ment due to high concentrations of particles and a mass balance
from the return flow of water generated due to the motion of near-
by particles. It is of similar form to the Batchelor settling velocity
when diffusion and van der Waals forces are negligible in compar-
ison to the gravitational force and is described in more detail in
Section 2.1. An often used validation technique of the Batchelor
and MLB settling velocity models is to calculate and compare
against experiments measuring the fall velocity of different inter-
faces separating regions of different particle distributions, see for
example Lockett and Bassoon (1979), Selim et al. (1983).

In this paper we use the MLB expression for our hindered set-
tling law. The simplified MLB expression is chosen as it has been
shown to have reasonable success at capturing the fall velocities
of interfaces of non cohesive bi- and polydisperse suspensions
(Lockett and Al-Habbooby, 1973; Xue and Sun, 2002), which are
the focus of this paper. Modelling the settling velocity of suspen-
sions comprising cohesive, or mixtures of cohesive and non-cohe-
sive, particles requires more complex sedimentation laws to
account for all the forces acting on a settling particle (Cuthbertson
et al., 2008). Here we restrict the study to particle suspensions
where cohesive forces may be assumed negligible. Although the
MLB model has been widely used (Basson et al., 2009) it has been
criticised for not capturing the stronger hindrance of large particles
as compared to small particles at very high concentrations
ð/ > 0:45Þ, as noted by Selim et al. (1983) and Hoyos et al.
(1994), where it is proposed that small particles are ‘dragged along’
by large particles.

Studies of bulk sedimentation are focused on the complete
evolution of a suspension within a bounded domain, as it evolves
from an initial state through to the final deposit. For monodis-
perse suspensions, a key contribution was made by Kynch
(1952), who showed that by writing the sedimentation velocity
as a function of the local volume fraction of particles, a number
of important dynamical features could be reproduced in contin-
uum models of the sedimentation process, most notably includ-
ing ‘shocks’, in which the local concentration of particles
abruptly varies over a vanishing small vertical extent. Kynch’s
model was essentially derived as an expression of the conserva-
tion of particulate mass – momentum and, in particular, inertia
of the particles were not explicitly modelled. Auzerais et al.
(1988) presented a more complete model of the dynamics of sed-
imentation, including inertia and stress generation due to con-
tacts and showed that discontinuities in particle concentration
became smoothed out as Péclet number was decreased. However
at large Péclet numbers it was shown that predicted concentra-
tion profiles exhibited Kynch-like behaviour. For sand-sized par-
ticles, typically hundreds of microns in diameter, suspended in
water, the Péclet number is large enough for inertial effects to
be ignored (typically Pe � 109).

Recent work by Bürger et al. (2000) and Bürger et al. (2008)
has developed a range finite element numerical algorithms for
the Kynch (1952) continuum models. They have extended the
models to cope with bi- and polydisperse suspensions, using a
MLB settling law and integrate coupled equations for each parti-
cle species independently. The finite element models incorporate
various artificial numerical viscosities to cope with shocks in par-
ticle concentration. The numerical results have been shown to
reproduce experimentally measured sedimentation behaviour
(Basson et al., 2009).

The aforementioned work by Kynch and Burger model the bulk
behaviour of the suspension assuming a horizontally homogeneous
suspension of particles. However, as shown by Batchelor and
Rensburg (1984) and Funamizu and Takakuwa (1996), structure
formation in a sedimenting suspension of particle may form den-
sity-driven instabilities in the sedimenting media. These structures
manifest themselves as high concentration clumping driving a
localised flow which can reinforce the clumping behaviour and
greatly distort the predicted sedimentation behaviour. They are
shown to arise, under certain conditions, from horizontal perturba-
tions to homogeneous particle suspensions (Batchelor and Rens-
burg, 1984). In the following work we restrict ourselves, as
Kynch did, to modelling vertical variations in particle concentra-
tion and therefore do not include these effects.

We note that although there have been many theoretical stud-
ies of the sedimentation velocity of particles in suspension there
has been a dearth in theoretical development, numerical analysis
aside, of the bulk sedimentation process since Kynch (1952) and
it is this issue we tackle in this paper. We review Kynch’s contribu-
tion in what follows and crucially amend his settling law with one
that predicts that all of the particles have settled out of suspension
within a finite time (Section 2), a problem Kynch (1952) had noted
and attempted to rectify in his original paper. However the main
contribution of this study is to analyse bidisperse sedimentation
(Section 3). We show that the method of characteristics may be ap-
plied to the now coupled settling equations for each of the two spe-
cies of particles to construct analytical solutions for the volume
fraction of each species. This reveals a rich variety of behaviours
and structures within the deposit that are functions of the relative
sizes, densities and initial concentrations of the suspended parti-
cles. However we are able to classify this more complicated set-
tling in an analogous way to monodisperse sedimentation. These
results may be used to interpret results from recent laboratory
experiments of the settling of mixtures of particles Amy et al.
(2006). Furthermore these exact solutions provide test cases to val-
idate numerical schemes for integrating the governing equations,
which can then be applied to more complicated sedimentation
problems (Bürger et al., 2008).

None of the aforementioned theoretical and numerical work has
made predictions on the structure of the deposit formed by sedi-
menting material. Thus the scope of this paper is threefold: to
understand and explain fully the sedimentation behaviour using
a justifiable hindered settling law; to relate deposit structure to
material properties and initial properties of the suspension; and
to provide analytical solutions which can validate numerical
models.
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2. Sedimentation of monodisperse suspensions

2.1. Particle settling velocity and mass conservation laws

We present a brief summary of the monodisperse version of the
particle settling velocity used in the MLB model, see Masliyah
(1979) and Lockett and Bassoon (1979). Mass conservation of par-
ticulate equates change in particle concentration to the gradient of
particle flux. Particle flux is given by the hindered settling velocity
of a sedimenting particle species multiplied by the particle species
concentration (Kynch, 1952). The model considers the time depen-
dent evolution of the volume fraction of particles, /ðz; tÞ, where the
z-axis is vertically aligned, on the assumption that diffusive effects
are negligible. Denoting the vertical velocities of the solid and fluid
phases by ws and wf , respectively, mass conservation is given by

@/
@t
þ @

@z
/wsð Þ ¼ 0 and

@ð1� /Þ
@t

þ @

@z
ðð1� /Þwf Þ ¼ 0: ð1Þ

Then by summing these two equations, so that the combined verti-
cal mass flux vanishes, we find that

ws ¼ ð1� /Þwp; ð2Þ

where wp � ws �wf is the slip velocity between the particle and
fluid phases.

The slip velocity for a single spherical particle of diameter D in
an unbounded fluid is readily calculated by equating the vertical
component of its submerged weight, pD3ðqs � qf Þg=6, where the
densities of the solid and fluid phases and gravitational accelera-
tion are denoted by qs; qf and g, respectively, with the viscous
drag, 3plDwp, where l is the viscosity of the suspending fluid. This
dynamical balance, which is appropriate provided the inertial ef-
fects of the fluid remain negligible, yields the Stokes’ settling veloc-
ity. For a particle in a suspension, we amend this description in two
ways. First the viscosity of the suspension is enhanced and follow-
ing Richardson and Zaki (1954), amongst others, we write the
effective viscosity of the suspension as le ¼ l=ð1� /Þn�1, where
n is determined empirically. Further we assume that once a maxi-
mum volume fraction of particulate, /m is exceeded, then the sub-
merged weight is borne by the solid matrix, so that the slip velocity
(and drag) vanish. Together these assumptions imply that the
downwards settling velocity of the solid phase is given by

ws ¼
�ws0ð1� /Þn / 6 /m

0 / > /m

(
; ð3Þ

where ws0 is the absolute value of the settling velocity for a single
particle in unbounded fluid, which is given by the Stokes settling
velocity ð½qs � qf �gD2=½18l�Þ for a spherical particle. We demon-
strate below that this formulation allows the settling velocity of
the solid phase to be easily generalised to include bi- and polydis-
perse suspensions.

2.2. Characteristic solutions for quiescent settling

We write mass conservation (1a) in dimensionless form using
the flow depth, h, as a length scale and h=ws0 as a timescale. Hence-
forth dimensionless velocities are distinguished by a carat. Further
we denote the vertical flux of particles per unit area by F ¼ /ŵs so
that the governing equation is given by

@/
@T
þ @F
@Z
¼ 0; ð4Þ

where T and Z are the dimensionless time and vertical coordinate,
respectively. This equation is solved subject to a condition of no flux
condition at the base of the flow Fð/ð0; TÞÞ ¼ 0 and an initial con-
centration profile of particulate. Here we impose a vertically uni-
form concentration profile, so that /ðZ;0Þ ¼ H, where H provides
a dimensionless measure of the total amount of sediment in sus-
pension. The governing equation is readily integrated using the
method of characteristics, see Kynch (1952) and for further details
Whitham (1974), by writing

d/
dT
¼ 0 on

dZ
dT
� kð/Þ ¼ @F

@/
: ð5Þ

This implies that for monodisperse suspensions, the characteristics
are lines of constant concentration. Solutions to this governing
equation may exhibit discontinuities (‘shocks’) over which the con-
centration changes. The jump condition (Rankine-Hugoniot condi-
tion) across the discontinuity may be deduced from the mass
conservation equation to give the shock speed, _S, as a function of
the volume fractions above and below the shock, denoted by
/þ � /ðSþ; TÞ and /� � /ðS�; TÞ, respectively. It is expressed as

_SðTÞ ¼ Fð/�Þ � Fð/þÞ
/� � /þ

: ð6Þ

The location of the top interface, cðTÞ, and the deposit height, gðTÞ,
are given by

dc
dT
¼ ŵsð/ðc; TÞÞ;

dg
dT
¼ �/ŵsð/Þ

/m � /
: ð7Þ

Both of these can be viewed as shocks; the former is a discontinuity
of particle concentration between the top of the settling layer and
pure fluid above, whereas the latter is a discontinuity between
the stationary deposit and the settling layer, the speed of which is
denoted by _Smð/Þ.

Following Kynch (1952), the interior shock formed is the one
that grows with the greatest speed, _S�. The reasoning for this is
simple: if we choose a shock (or characteristic) that grows more
slowly it will be immediately over taken by _S�. Given uniform ini-
tial conditions, /þ ¼ H, the shock speed can therefore be treated as
a function of the concentration below the shock, /� and maybe
found by maximising _S with respect to /�

@ _S
@/�

¼ 1
/� � /þ

@F
@/�

� Fð/�Þ � Fð/þÞ
ð/� � /þÞ2

¼ 0: ð8Þ

It is noteworthy that the shock speed is equal to kð/�Þ and so the
shock lies on a characteristic curve. Additionally we require that
/� > /þ to maintain gravitational stability and we denote the fast-
est growing shock as _S�. In a similar manner it is shown that the de-
posit growth rate must be given by the shock condition (7b)
because otherwise the bed growth rate becomes unbounded as
the volume fraction approaches /m.

Typical solutions for the characteristic curves are shown in
Fig. 1a–c for a continuous dependence of the flux of particles,
Fð/Þ, upon the concentration, /, as pioneered by Kynch (1952).
Typically these flux functions are of the form F ¼ /ð/m � /Þn so
that the flux vanishes as the maximum volume fraction is attained.
The profiles feature shocks and rarefaction fans, as will be dis-
cussed below. Importantly this form of flux function has the conse-
quence that the characteristic along which / ¼ /m has vanishing
gradient (kð/mÞ ¼ 0, provided n > 1). Thus the suspension does
not settle out to the maximum concentration within a finite time.
Kynch foresaw this and sketched flux functions that avoided the
problem, although he did not present an equation for a suitable
flux. Various authors (Barton et al., 1992) have attempted to artifi-
cially modify the flux function so that finite settling times are pre-
dicted for vanishing flux as /! /m, whereas in this contribution
we avoid the problem by choosing a discontinuous flux function
as discussed previously, (3).

The characteristic profiles pictured in Fig. 1d–h, calculated
using a hindered settling law (3) feature a combination of four
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Fig. 1. Sketched characteristic curves for monodisperse settling with a continuous flux (a)–(c) and a discontinuous flux (d)–(h). The figures depict the possible structures of
the solutions depending upon the initial volume fraction, H. The characteristic plane features characteristic curves, which are also contours of volume fraction (solid lines)
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different processes. Firstly, the location of the top interface defined
as the separation between clear fluid and the suspension. Secondly,
the location and growth rate of the top of the deposit, which is de-
fined as the interface between the suspension below and at the
maximum packing concentration. Third and fourthly are the exis-
tence of interior shocks or rarefaction fans in the characteristic
curves.

The behaviour of the characteristic curves as the initial volume
fraction H is increased is depicted in Fig. 1d–h and was reported by
Auzerais et al. (1988). For low initial concentrations, the gradient
of characteristics is negative and the shock speed of the interior
shock, _S� is less than that of the shock speed to the maximum pack-
ing, _Sm, Fig. 1d. Increasing the initial concentration we find that
there exists shocks over which the volume fraction jumps to some
/�, less than /m. These arise because their shock speed is greater
than the shock speed for a jump to the maximum packing concen-
tration, /m. Thus the solutions feature two shocks, one from /þ to
some /� < /m and then after a rarefaction fan in which / increases,
followed by a further shock to the deposit. Further increasing H
beyond 1=ðnþ 1Þ reverses the direction of the characteristics,
although the overall structure remains the same, see Fig. 1e-f.
For still larger values of H, we find that the interior shock vanishes
occurring at H ¼ 2=ðnþ 1Þ, see Fig. 1g. For larger H the shock to
the maximum packing overtakes the rarefaction fan (Fig. 1g). Fol-
lowing Auzerais et al. (1988), there are four settling regimes de-
picted in Fig. 1 and summarised in Fig. 2, which are determined,
in terms of the total mass loading H and the concentration below
the interior shock, /� (8), by the conditions

Regime 1 _SmðHÞP kðHÞ _SmðHÞP _S�ðHÞ H < /� < /m

Regime 2 _S�ðHÞP _SmðHÞ _S�ðHÞP kðHÞ H < /� < /m

Regime 3 kðHÞP _SmðHÞ 9= _S� such that H < /� < /m

Regime 4 _SmðHÞP kðHÞ 9= _S� such that H < /� < /m

9>>>>=
>>>>;
:

ð9Þ
3. Sedimentation of bidisperse particle suspensions

We now extend the mathematical model to the sedimentation of
bidisperse suspensions. To this end we denote the volume fraction
and dimensionless settling velocity of class i of particles by /i and
ŵsi, in terms of variables, for which the flow depth h and the maxi-
mum terminal settling velocity have been used to render space
and time scales dimensionless. Further, assuming that the particles
are of uniform density and their terminal velocity in an unbounded
fluid is given by Stokes’ law, we find that the dimensionless slip
velocity ŵpi simplifies to the Richardson and Zaki viscosity modifica-
tion multiplied by the square of the ratio of particle diameters
ŵpi ¼ ð1�UÞn�1ðDi=D2Þ2. We note that the analysis can be readily
extended to incorporate particles of varying density, but at the cost
of increased algebraic complexity (Bürger et al., 2000).

We find the following expressions of mass conservation for each
particle species and for the interstitial fluid.

@/i

@T
þ @

@Z
ð/iŵsiÞ ¼ 0 and

@ð1�UÞ
@T

þ @

@Z
ŵf ð1�UÞ
� �

¼ 0; ð10Þ

where U ¼
P

i/i denotes the total volume fraction of particulate. Gi-
ven the slip velocity of each phase is written as ŵpi ¼ ŵsi � ŵf we
deduce, as shown by Masliyah (1979), that

ŵsi ¼ ŵpi �
X2

j¼1

/jŵpj: ð11Þ

To close this model we employ a model of the slip velocity in which
the viscous drag, with the viscosity enhanced by a function of the
total volume fraction of particulate, le ¼ l=ð1�UÞn�1 is balanced
by the submerged weight of the particles, provided that the total
volume fraction is less than the maximum, /m. However, if the vol-
ume fraction exceed this maximum then it is assumed that the solid
matrix supports the submerged weight and the slip velocity
vanishes.

Thus in dimensionless form, the settling velocity of class i of
particles is given by

ŵsi ¼
ŵpi �

P2
i¼1

ŵpi/i

� �
U 6 /m

0 U > /m

8><
>: : ð12Þ

This formulation of bidisperse settling (12), by calculating the dif-
ference between the solid phase slip velocity and the surrounding
fluid velocity is the extension of the monodisperse settling law (3)
to polydisperse suspensions (Masliyah, 1979). Here it is assumed
that /m is a constant, but this is not necessarily accurate as the
packing density of polydisperse suspensions can exceed those of
monodisperse suspensions (Sanders, 1980). The effect of a variable



Fig. 3. The characteristic plane for bidisperse settling with shocks depicted with a
solid line, k1-characteristics with a dotted line and k2-characteristics with a dashed
line. The parameters used to construct this plot were n ¼ 6; D1=D2 ¼ 3=4;

Fig. 2. The shock speeds _S� and _Sm , the characteristic velocity k and the concentration below an interior shock /� satisfying condition (8), as functions of the total volume
fraction H, for n ¼ 6 and /m ¼ 0:6. This graphically displays the existence of the four settling regimes described by (9) and pictured in Fig. 1d–h.
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/m is discussed in Appendix A, where we analyse the settling behav-
iour and deposit structure when the maximum packing becomes a
function of particle size and concentration of each species.

By defining the flux per unit area of each class by Fi ¼ /iŵsi, we
deduce the following coupled system of partial differential equa-
tion to govern the volume of the species of particles

@/
@T
þ K

@/
@Z
¼ 0 where / ¼

/1

/2

� �
and K ¼

@F1
@/1

@F1
@/2

@F2
@/1

@F2
@/2

 !
:

ð13Þ

This system will be solved subject to initial conditions that the con-
centration of both species is vertically uniform and given by

/1 ¼ aH and /2 ¼ ð1� aÞH; ð14Þ

where 0 6 a 6 1 and H is the initial volume fraction of particulate.
We note from the expressions of mass conservations that there will
be an initial upward flux of the smaller particle (henceforth denoted
as class 1) if

ŵp1 <
ð1� aÞH
1� aH

: ð15Þ

The governing equations admit shocks, the speeds of which, _S, are
given by

_SðTÞ ¼ F�1 � Fþ1
/�1 � /þ1

¼ F�2 � Fþ2
/�2 � /þ2

; ð16Þ

where the superscripts denote evaluation above (+) and below (-)
the shock, respectively. The characteristic form is found from the
matrix representation of the mass conservation Eqs. (13) by evalu-
ating the eigenvalues ki and left eigenvectors Li ¼ ðLi

1; L
i
2Þ,

Li
1

d/1

dT
þLi

2
d/2

dT
¼0 on

dZ
dT
¼ki;

k1;2¼
1
2

@F1

@/1
þ@F2

@/2

� �
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@F1

@/1

� �2

þ @F2

@/2

� �2

�2
@F1

@/1

@F2

@/2
þ4

@F1

@/2

@F2

@/1

s
;

L1;2¼ �
@F2
@/1

1
2

@F1
@/1
� @F2

@/2

� �
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@F1
@/1

� �2
þ @F2

@/2

� �2
�2 @F1

@/1

@F2
@/2
þ4 @F1

@/2

@F2
@/1

r ;1

0
BB@

1
CCA
ð17Þ
where k1 and L1
i take the negative sign of the square root and k2 and

L2
i the positive sign. The characteristic form (17) may be integrated

to yield the Riemann invariants, which are constant along the char-
acteristic curves. Unlike the Batchelor sedimentation model (Batch-
elor and Rensburg, 1984) the MLB model of settling velocities
always results in real-valued eigenvalues and eigenvectors for char-
acteristics. This can be demonstrated by showing the term

@F1

@/1

� �2

þ @F2

@/2

� �2

� 2
@F1

@/1

@F2

@/2
þ 4

@F1

@/2

@F2

@/1
P 0: ð18Þ

Using the settling velocity (12), where ŵpi is the Stokesian settling
velocity subject to the Richardson and Zaki (1954) effective viscos-
ity modification, we can reduce (18) to

D1

D2

� �2

/1ðnþ 1Þ � 1ð Þ � /2ðnþ 1Þ � 1ð Þ
 !2

þ 4
D1

D2

� �2

/1/2ðnþ 1Þ2 P 0; ð19Þ
/m ¼ 0:6; H ¼ 0:15 and a ¼ 0:5.



(a) (b) (c)

Fig. 4. (a) The total volume fraction, UðZ; TÞ; (b) volume fraction, /1ðZ; TÞ; and (c) volume fraction, /2ðZ; TÞ as functions of the dimensionless height at T ¼ 1:0;2:5;3:5. Times
were chosen to coincide with different behaviours in the regions of the characteristic plane depicted in Fig. 3. The curves at T ¼ 1; T ¼ 2:5 and T ¼ 3:5 capture the interior
shock and the initial segregation of some of the smaller particles from the suspension (respectively region OAH and ABH); the rarefaction fans of both the monodisperse
segregate and the bidisperse suspension (respectively region OAC and ABCD); and the final deposition of the monodisperse phase of smaller particles (g1 to g2). This bidisperse
sedimentation problem is characterised by parameter values n ¼ 6; D1=D2 ¼ 3=4; /m ¼ 0:6; H ¼ 0:15 and a ¼ 0:5.

Fig. 5. The settling regimes (1–4) of bidisperse settling from uniform initial
conditions as a function of the initial volume fraction H, the proportion of smaller
particles, a and the relative Stokesian settling velocities ðD1=D2Þ2 for a discontin-
uous settling law (12) with n ¼ 6; /m ¼ 0:6. In (a) ðD1=D2Þ2 ¼ 0:5 and in (b) a ¼ 0:5.
The dashed line depicts the interface in the phase space below which the smallest
particle class is carried upwards by the return flux of water.
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which can be seen to always be strictly greater than or equal to
zero. Thus the system can always be treated as a hyperbolic set of
equations. Basson et al. (2009) provide a different proof of hyperb-
olicity for a more general system, where n, the enhanced viscosity
exponent, is allowed to vary with particle diameter.

We may construct analytical solutions to this system of equa-
tions by exploiting the form of the characteristic curves and by
identifying the location of shocks. We illustrate the solution for a
particular example with parameter values n ¼ 6; D1=D2 ¼ 3=4;
/m ¼ 0:6; H ¼ 0:15 and a ¼ 0:5, presented in Fig. 3. There are six
regions within this figure; OAH is the region within which both
volume fractions are equal to their initial values; OAC is a rarefac-
tion fan containing particles of both species; and the area under g2

is deposit formed by a mixture of both particle species. The upper
regions ABH;ABCD and the area between g1 and g2 are absent of
the heavier particles. Forced by the settling velocity of the heavier
particle, region ABH is of constant concentration and region ABCD is
the continuation of the rarefaction fan. The area between g1 and g2

is deposit entirely consisting of the lighter particles of the initial
suspension.

The figure shows that the solution features a number of shocks,
lying along curves OA; OC; HA; HB; AB; AC; BD and CD. We use
the interior shock along OA to classify the problem as belonging
to regime 2, as in the monodisperse case, see Fig. 1. Settling re-
gimes in the bidisperse case are described more completely by
Fig. 5 and in Section 3.1. The evolution of some of these curves is
straightforward: the curves HA and AC de-mark the upper limit
of the region within which the larger particles (class 2) are found.
The rate of change of the position along these curves is the settling
velocity ŵs2, which is a function of the local volume fractions of
both species. Likewise the curves HB and BD demarcate the upper
extent of the smaller particles (class 1) and thus their rates of
change is ŵs1, which here is only a function of /1 as these curves
are boundaries to regions absent of suspended larger particles
ð/2 ¼ 0Þ. Within the region OAH, both volume fractions are con-
stant and equal to their initial conditions. Thus below this uniform
region, OAC is a rarefaction fan within which the k2-characteristics
are straight lines emanating from the origin. This region is sepa-
rated from the adjoining uniform region by a shock, OA, the speed
of which is maximised, by the same arguments discussed in Sec-
tion 2. By viewing (16a, b) as expressions for _Sð/�1 ;/

�
2 Þ and by seek-

ing conditions for when @ _S=@/�1 ¼ 0 and @ _S=@/�2 ¼ 0, subject to
enforcing the equality of (16a) and (16b), we find that the shock
speed along OA; _S�, satisfies
@F�1
@/�1

� _S�

� �
@F�2
@/�2

� _S�

� �
¼ @F�2
@/�1

@F�1
@/�2

: ð20Þ

Hence the speed of the shock is identical to the characteristic speed,
k2 and so the shock lies on a characteristic curve. Within the rare-
faction fan, OAC, we calculate the Riemann invariant that remains
constant along the k1-characteristics. This is given by d/1=d/2 ¼
�L1

2=L1
1, from which we deduce that /2 ¼ Gð/1Þ for some determined

function G. From (17) it can then be deduced that on k2-character-
istics within the fan OAC, both volume fractions are constant if
L1

1L2
2 � L1

2L2
1 – 0 and this latter condition is necessarily held for this

system of governing equations. We calculate the lower boundary
to the rarefaction fan, curve OC, as a shock over which the total vol-
ume fraction jumps to /m, the value corresponding to maximum
packing. This boundary is also a k2-characteristic that starts at the
origin. The shock speed along OC, after a rarefaction fan, is found
by maximising the bed growth rate, given by

_Sm ¼
�Fþ1

/�1 � /þ1
¼ �Fþ2

/�2 � /þ2
¼ k2; ð21Þ

together with /þ2 ¼ Gð/þ1 Þ and /�1 þ /�2 ¼ /m. If the shock to the
maximum packing concentration does not occur after a rarefaction
fan it may be found from (21), where /þ1 ; /þ2 are given by the initial
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concentration and /�1 þ /�2 ¼ /m. Finally the shock AC is constructed
as the boundary to the rarefaction region over which the volume
fraction of the larger particles (class 2) jumps from their value with-
in the fan OAC to zero. Thus the speed of the shock is ŵs2.

This structure of characteristic curves produces rather compli-
cated profiles of the volume fraction at various instants of time.
In Fig. 4 we depict the volume fractions of both species at three
times during their sedimentation, noting that they exhibit a num-
ber of evolving discontinuities.

3.1. Settling behaviour of bidisperse suspensions

The pattern of sedimentation of a bidisperse suspension and the
structure of the characteristic curves is determined by the initial to-
(a) (b)

(e)(d)

(g) (h)

Fig. 6. The evolution of the total volume fraction, UðZ; TÞ and particle volume fraction
loadings; H ¼ 0:05 (a), (b) and (c); H ¼ 0:35 (d), (e) and (f); H ¼ 0:5 (g), (h), (i). The diffe
ðH ¼ 0:5Þ, as shown in Fig. 5. Evolution from settling regime 2 is shown in Fig. 4. Here
tal volume fraction, U, the ratio of the settling velocities, ðD1=D2Þ2

and the initial proportion of each class of particle, a. Above we have
described in detail the evolution of the suspension for particular val-
ues of these parameters, which features a shock to the maximum
packing fraction, an internal shock (implying it belongs to settling
regime 2, Fig. 5) and a rarefaction fan (see curves OC;OA and region
OAC in Fig. 3). As the parameters vary, the magnitude of these shocks
change and, in analogous manner to monodisperse suspensions, we
can identify four settling regimes.

Settling regimes 1 and 4 exhibit a direct shock to the maximum
packing concentration, where regime 1 is at very low initial parti-
cle concentration and regime 4 is at very high initial particle con-
centration. Regime 2 exhibits an interior shock followed by a
rarefaction fan, see Fig. 3, regime 3 is analogous to regime 2 but
(c)

(f)

(i)

s /1ðZ; TÞ and /2ðZ; TÞ as functions of the dimensionless height for varying mass
rent mass loadings correspond to settling regimes 1 ðH ¼ 0:05Þ, 3 ðH ¼ 0:35Þ and 4
D1=D2 ¼ 3=4; a ¼ 0:5; n ¼ 6 and /m ¼ 0:6.



Fig. 7. The mixing ratio in the deposit, R, as a function of the total volume fraction H, the ratio of settling velocities ðD1=D2Þ2 and initial proportion of smaller particles, a.
Unless depicted otherwise the parameter values for the bidisperse settling are given by H ¼ 0:2; ðD1=D2Þ2 ¼ 0:5; a ¼ 0:5. The settling regimes that arise as a function of the
total volume fraction are denoted 1! 4 (see Fig. 5). For the figure depicting the variation of R with ðD1=D2Þ2 there is a settling regime change from 1! 2 which is not clearly
visible on these scales ððD1=D2Þ2 � 0:018Þ.
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has no interior shock (along the arc OA in Fig. 3). Transition be-
tween the regimes 1 to 4 occurs with increasing the initial volume
fraction, H. The concentration of the monodisperse region of smal-
ler particles (ABH and ABCD in Fig. 3) is directly forced by the dis-
continuity in particle concentration caused by the difference in
settling velocity between particle classes. Regions of downwards
(upper) and upwards (lower) flux of the lightest particles are sep-
arated by the dashed line in Fig. 5. These settling regimes are anal-
ogous to those depicted in Fig. 1 for monodisperse suspensions
(Auzerais et al., 1988). As in (9), boundaries between regimes are
described in terms of the total mass loading H, the interior shock
speed _S� and shock speed to the maximum packing concentration
_Sm, positive characteristics k2 and the total concentration below
an interior shock U�,
Regime 1 _SmðHÞP k2ðHÞ _SmðHÞP _S�ðHÞ H < U� < /m

Regime 2 _S�ðHÞP _SmðHÞ _S�ðHÞP k2ðHÞ H < U� < /m

Regime 3 k2ðHÞP _SmðHÞ 9= _S� such that H < U� < /m

Regime 4 _SmðHÞP k2ðHÞ 9= _S� such that H < U� < /m

9>>>>>=
>>>>>;
:

ð22Þ

In Fig. 5 it is observed that changing the total volume fraction in
suspension and to a lesser extent the ratio of Stokesian settling
velocities (given by particle sizes) will greatly affect which settling
regime is observed. Varying the proportion of each type of sedi-
ment only weakly affects the settling behaviour of a bidisperse sus-
pension. The evolution of concentration profiles for settling
regimes 1, 3 and 4 is shown in Fig. 6, sedimentation belonging to
regime 2 was shown in Fig. 4. In these figures sedimentation prob-
lems from regime 1 and 4 can be seen to have shocks to the max-
imum packing concentration, regime 2 has a shock followed by a
rarefaction fan and then another shock to the maximum packing
concentration whereas regime 3 type sedimentation problem has
a rarefaction fan followed by a shock to the maximum packing con-
centration. These characteristic profiles can all be observed at
T ¼ 1, which is plotted for each problem (see Fig. 6).
3.2. Deposit structure from bidisperse suspensions

In many naturally-occurring situations the composition of the
deposit that arises from sedimentation is of interest. It is possible
to calculate this exactly for this bidisperse suspension using the
characteristic solutions presented above. It is evident that from
vertically uniform initial conditions the deposit will be composed
of a region of mixed large and small particles, in which the ratio
of the smaller to the larger grains is denoted by R ¼ /1=/2, overlain
by a layer of purely finer grains. This mixed layer persists over
some depth, 0 < z < g2, while the layer of fine grains is found for
g2 < z < g1 (see Fig. 3). The ratio, R is determined by the ratio of
the fluxes of each species at the top of the developing deposited
layer (along the arc OC in Fig. 3). As was shown from the character-
istic equations the particle concentration and therefore particle
flux is constant along this arc until all the larger particles are
deposited and thus R is also a constant in the region of the deposit
between 0 and g2.

In Fig. 7 we plot the dependence of R upon the parameters a,
ðD1=D2Þ2 and H. From this figure we note that for fixed a and
ðD1=D2Þ2 there is a non-monotonic variation of the ratio of particles
with the total initial volume fraction. This arises due to the compli-
cated settling behaviour that is found as the volume fraction
changes (regimes 1–4), which feature internal shocks and rarefac-
tions, thus altering the vertical distribution of the suspended par-
ticles and consequently affecting the composition of the deposit.
4. Summary and Conclusions

Analytical solutions have been constructed to reveal the sedi-
mentation behaviour of initially uniform monodisperse and bidis-
perse suspensions. This work has generalised the pioneering study
of Kynch (1952) to mixtures of particles sizes (and densities) and
has calculated the evolving state of the suspension, in addition to
the composition of the deposit, as settling occurs through other-
wise quiescent fluid. Depending on the initial volume fraction,
and for bidisperse suspensions the initial relative proportions
and settling velocities, these solutions feature a rich structure of
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shocks and rarefactions. We have shown how to classify the set-
tling behaviour in to one of four regimes, dependent on the govern-
ing parameters and that this classification may be used for both
mono and polydisperse suspensions. Additionally we have shown
that bidisperse suspensions generate a deposit in which there is
a region of mixed particles of constant composition, overlain by a
layer composed only of the particles with the smaller settling
velocity.

From this study we may explain two observations found in the
experimental results reported by Amy et al. (2006). First they iden-
tified an ungraded region at the base the deposit. We may interpret
this as due to the vertically uniform initial distribution of the sed-
iment in the experiments. Such initial conditions give rise to con-
stant fluxes of each particle type into the shock that marks the
top of the growing deposit. Second they found that the size of
the ungraded region, when normalised with respect to final deposit
depth, grew as the total initial volume fraction was increased. This
may be explained by noting that the ungraded region forms until
the largest particle has been completely deposited, where the set-
tling velocity of the largest particle class is significantly reduced as
total volume fraction is increased (12) but that the speed of the
shock to the maximum packing concentration is only weakly
affected by total volume fraction.
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Appendix A. Maximum packing laws

In this appendix we extend the analysis of bidisperse settling to
incorporate a variable maximum packing concentration, which is
greater than the maximum packing value of a monodisperse sus-
pension, reflecting the packing of smaller grains into the space
between larger grains. In what follows we denote the total maxi-
mum packing of a bidisperse suspension by /b ¼ /1 þ /2 while
/m remains the maximum packing of a monodisperse suspension.

It is well known that when considering binary or polydisperse
mixtures of spheres that the maximum packing value can be in-
creased, see for example Kansal et al. (2002), Sanders (1980) and
Shapiro and Probstein (1992). However although the random loose
packing of equal spheres is fairly well understood, see Kansal et al.
(a)

Fig. A.1. (a) The characteristic plane when using the enhanced packing fraction (A.1) for
the shocks (solid lines). Also shown is the location of the shocks when /b ¼ /m (dashed lin
the total volume fraction, /b , as a function of height, calculated using an enhanced maxim
both calculations, there is initially a bidisperse deposit of both species, which is then over
for the enhanced and constant maximum packings, respectively.
(2002) and references therein, it is not as well established how the
random loose packing of polydisperse mixtures is dependent on
the individual volume fractions of each class of particles and the
relative diameters of the particles.

It has been established experimentally that the maximum pack-
ing concentration of a bidisperse mixture of particles tends to the
maximum packing of a monodisperse mixture of particles as the
proportion of the deposit occupied by the largest or smallest parti-
cle class vanishes (Shapiro and Probstein, 1992). Further it has
been shown, see for example Shapiro and Probstein (1992), Kansal
et al. (2002), that decreasing the ratio of particle size, ðD1=D2Þ, in-
creases the maximum packing.

To illustrate the effects of this enhanced packing on bidisperse
bulk settling, we introduce the following simple expression for
the maximum packing fraction, /b, that allows for packing frac-
tions in excess of /m when there is a mixture of particle sizes

/b ¼ /m þ /1/2 1� D1

D2

� �
/m: ðA:1Þ

This expression shares some features with the formulation sug-
gested by Kansal et al. (2002) and permits an illustrative calculation
of bidisperse sedimentation and deposit formation using the analyt-
ical techniques employed in the main body of the paper. We note
that when the particles are of the same size ðD1 ¼ D2Þ and when
one of the particles species is absent (/1 ¼ 0 or /2 ¼ 0), the packing
fraction of the deposit reduces to monodisperse value. Improved
expressions may be substituted in place of (A.1) as they become
available.

We now employ this model of bidisperse packing and calculate
the sedimentation from an initially well mixed suspension with
/1ðZ;0Þ ¼ /2ðZ;0Þ ¼ 0:075 and for parameters n ¼ 6; D1=D2 ¼
3=4 and /m ¼ 0:6. (Settling from these initial conditions with these
parameter values was described in detail in Section 3 and the char-
acteristic plane was plotted in Fig. 3.) With the enhanced packing
in the deposit, we find that the solutions for the volume fraction
of each species remain rather similar to the results derived in Sec-
tion 3, with the same structure of shocks and rarefaction fans. This
is most readily seen in the plot of the characteristic plane (Fig. A.1).
Here we note that the main differences is the reduction in the bed
growth rate, which occurs due to the higher packing fraction in the
deposit. For this case, we find that the bed volume fraction is in-
creased from 0.6 to 0.6129 during the phase of the settling in
which it comprises both particles (see Fig. A.1). Also during this
phase, although the volumes fractions of both species increase,
the ratio of the particle volume fractions, R ¼ /1=/2 is somewhat
(b)

n ¼ 6; D1=D2 ¼ 3=4; /m ¼ 0:6; H ¼ 0:15 and a ¼ 0:5, showing only the locations of
es). (b) The volume fractions of the particle classes, /1 (circles) and /2 (squares), and
um packing fraction (solid) and a constant maximum packing fraction (dashed). For
lain by deposit, consisting only of /1. The total depth of the depth is 0.2461 and 0.25
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reduced, indicating that the fraction of fine particles is reduced.
Finally we note that the time for the all of the suspension to settle
out is increased, which occurs due to the reduced bed growth rate.

This illustrative calculation shows that the results presented in
this paper may be readily generalised to account for the enhanced
packing fractions of bidisperse deposits and that the overall
structure of the solution may remain invariant under such
generalisations.
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